Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide.
نویسندگان
چکیده
Two modes of killing of Escherichia coli K-12 by hydrogen peroxide can be distinguished. Mode-one killing was maximal with hydrogen peroxide at a concentration of 1 to 2 mM. At higher concentrations the killing rate was approximately half maximal and was independent of H2O2 concentration but first order with respect to exposure time. Mode-one killing required active metabolism during the H2O2 challenge, and it resulted in sfiA-independent filamentation of both cells which survived and those which were killed by the challenge. This mode of killing was enhanced in xth, polA, recA, and recB strains and was accelerated in all strains by an unidentified, anoxia-induced cell function. A strain carrying both xth and recA mutations appeared to undergo spontaneous mode-one killing only under aerobic conditions. Mode-one killing appeared to result from DNA damage which normally occurs at a low, nonlethal level during aerobic growth. Mode-two killing occurred at higher doses of H2O2 and exhibited a multihit dependence on both H2O2 concentration and exposure time. Mode-two killing did not require active metabolism, and killed cells did not filament, although survivors demonstrated a dose-dependent growth lag. Strains with DNA-repair defects were not especially susceptible to mode-two killing.
منابع مشابه
Induction of repair capacity for oxidatively damaged DNA as a component of peroxide stress response in Escherichia coli.
We examined whether or not peroxide stress induces a repair capacity for oxidatively damaged DNA in Escherichia coli cells. Peroxide stress was brought about by adding 30 microM hydrogen peroxide (H2O2) to exponentially growing cells. The following results were obtained. (1) After exposure to H2O2, E. coli resistance to X-rays was enhanced. The acquisition of resistance was inhibited by rifampi...
متن کاملSeveral pathways of hydrogen peroxide action that damage the E. coli genome
Hydrogen peroxide is an important reactive oxygen species (ROS) that arises either during the aerobic respiration process or as a by-product of water radiolysis after exposure to ionizing radiation. The reaction of hydrogen peroxide with transition metals imposes on cells an oxidative stress condition that can result in damage to cell components such as proteins, lipids and principally to DNA, ...
متن کاملMicromolar concentrations of hydrogen peroxide induce oxidative DNA lesions more efficiently than millimolar concentrations in mammalian cells.
Reactive oxygen species produce oxidized bases, deoxyribose lesions and DNA strand breaks in mammalian cells. Previously, we demonstrated that aldehydic DNA lesions (ADLs) were induced in mammalian cells by 10 mM hydrogen peroxide (H2O2). Interestingly, a bimodal H2O2 dose-response relationship in cell toxicity has been reported for Escherichia coli deficient in DNA repair as well as Chinese ha...
متن کاملThe Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions.
A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show tha...
متن کاملIncreased sensitivity to oxidative challenges associated with topA deletion in Escherichia coli.
Deletion of topA in Escherichia coli was found to result in a higher level of killing after treatment with either hydrogen peroxide or N-ethylmaleimide. This effect on oxidative challenge response represents a new role for E. coli DNA topoisomerase I in addition to prevention of excessive negative supercoiling of DNA.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 166 2 شماره
صفحات -
تاریخ انتشار 1986